Milad Azizkhani

mazizkhani3@gatech.edu | 🛅 linkedin.com/in/milad-azizkhani | 🞓 Google Scholar | 🏶 miladroboticist.github.io

Education

Georgia Institute of Technology

Ph.D. in Robotics, Minor in Optimization

Amirkabir University of Technology (AUT)

M.Sc. in Mechatronics Engineering, Ranked 2nd in program

Bu Ali Sina University

B.Sc. in Mechanical Engineering, Ranked 3rd in program

Atlanta, GA, USA 2022–2026 est. Tehran, Iran 2017–2020 Hamedan, Iran

2013-2017

Honors and Awards

• Ph.D. Research Excellence Award

Spring 2025, Georgia Institute of Technology
Awarded by the Mechanical Engineering Department for outstanding doctoral research.

• Flowers Family Topping Fellowship

Fall 2024, Georgia Institute of Technology

Awarded by the Mechanical Engineering Department for achieving the highest number of first-author citations.

Research Interests

I design, build, model, control, and integrate robots for various applications. My primary objective is to develop innovative control methods that synergize model-based and learning approaches. My research, both current and past, revolves around Adaptive Control, Control Theory, Learning-Based Control, Optimal Control, Trajectory Optimization, Model Predictive Control, Robot Learning, Imitation Learning, Reinforcement Learning, Deep Learning, Soft Robots, Continuum Robots, and Visual Servoing.

Skills

Programming:

MATLAB, Python, Julia, C++, C, Git & Github, Linux, LaTeX

Technologies & Tools:

ROS, CasADi, YALMIP, Gurobi, TensorFlow, PyTorch, StableBaseline3, Drake, MuJuCo, PyBullet, Isaac Gym, Sur-RoL, OpenCV, Arduino, Simulink, LabVIEW, Maple, Mathematica, SolidWorks, ABAQUS, ANSYS, FlowCode, MoCap

Publications

Journal Articles

- [J8] M. Azizkhani, S. Kousik, and Y. Chen, "Dynamic Task Space Control of a Redundant Pneumatically Actuated Soft Robot," *IEEE Robotics and Automation Letters*, 2025. [DOI]
- [J7] M. Azizkhani, J. Ha, A. L. Gunderman, and Y. Chen, "Soft Robot Kinematic Control via Manipulability-Aware Redundancy Resolution," ASME Journal of Mechanisms and Robotics, 2025. [DOI]
- [J6] A. L. Gunderman, Y. Wang, B. O. Gunderman, A. Qiu, M. Azizkhani, J. Sommer, and Y. Chen, "Kinetostatics and Retention Force Analysis of Soft Robot Grippers with External Tendon Routing," *IEEE Robotics and Automation Letters*, 2024. [DOI]
- [J5] A. L. Gunderman, M. Azizkhani, S. Sengupta, K. Cleary, and Y. Chen, "Modeling and Control of an MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME)," *IEEE/ASME Transactions on Mechatronics*, 2023. [DOI]
- [J4] J. Shen, Y. Wang, M. Azizkhani, D. Qiu, and Y. Chen, "Concentric Tube Robot Redundancy Resolution via Velocity/Compliance Manipulability Optimization," *IEEE Robotics and Automation Letters*, 2023. [DOI]
- [J3] M. Azizkhani, A. L. Gunderman, I. S. Godage, and Y. Chen, "Dynamic Control of Soft Robotic Arm: An Experimental Study," *IEEE Robotics and Automation Letters*, 2023. [DOI]
- [J2] M. Azizkhani, M. Zareinejad, and M. A. Khosravi, "Model Reference Adaptive Control of a Soft Bending Actuator with Input Constraints and Parametric Uncertainties," *Mechatronics*, 2022. [DOI]
- [J1] M. Azizkhani, I. S. Godage, and Y. Chen, "Dynamic Control of Soft Robotic Arm: A Simulation Study," *IEEE Robotics and Automation Letters*, 2022. [DOI]

Conference Proceedings

- [C3] A. L. Gunderman, M. Azizkhani, S. Sengupta, K. Cleary, and Y. Chen, "Open Source MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME): Design and Manufacturing Guidelines," 2023 International Symposium on Medical Robotics (ISMR) [DOI]
- [C2] A. Qiu, C. Young, A. L. Gunderman, **M. Azizkhani**, Y. Chen, and A.-P. Hu, "Tendon-Driven Soft Robotic Gripper with Integrated Ripeness Sensing for Blackberry Harvesting," 2023 IEEE International Conference on Robotics and Automation (ICRA) [DOI]
- [C1] M. Azizkhani and Y. Chen, "Supervised Adaptive Fuzzy Control of LVAD with Pulsatility Ratio Modulation," 2022

Experience

Georgia Institute of Technology, Atlanta, GA, USA

2022 - Present

Senior Graduate Research Assistant, BioMedical Mechatronics (BM2) Lab

· Research:

- Synergizing Model-Based and Learning Approaches for Sample-Efficient Adaptive Algorithms
- Safe Dexterous Manipulation with Adaptive Learning for Uncertainty Mitigation
- Planning Through Contact via Trajectory Optimization
- Reachability Analysis for Contact in Robotic Systems
- Dynamic Task Space and Joint Space Control of Redundant Pneumatically Soft Robotic Arm
- Gain Scheduled Redundancy Resolution Resolved Rate Kinematic Control for a Redundant Pneumatically Soft Robotic Arm
- Control of MR-SAFE Pneumatic Radial Inflow Motor
- Supervised Adaptive Fuzzy Control of Left Ventricular Assistive Devices

• Teaching and Supervision Responsibilities:

- TA for VIP course, Soft Elbow Rehabilitation Device Development.
- Senior Mentor for Graduate Students
 - * Locomotion + Manipulation control of Cassie+Soft Arm using Reinforcement Learning (Kanishk Kanishk)
 - * Soft Underwater Robot with Shape Memory Alloy Actuation (Thanapol Tantagunninat)
 - * Tendon Driven Continuum Robot (Man Wo Lui)
- Senior Mentor for Undergraduate Students
 - * Soft Robot Control with Reinforcement Learning (Aaditya Dhar)
 - * Perception and Control of Bi-Manual Surgey with dVRK system (Satya Abihith Velumuri)
 - * Soft Gripper (Alex S. Qiu)
 - * Design rotary encoder for soft robot elongation measurement (Nyah M. Ebanks)
 - * Solving forward and inverse kinematic with machine learning (Benjamin Gunderman)

University of Arkansas, AR, USA

2021 - 2022

Senior Graduate Research Assistant, Medical Robotics Lab

• Projects: Dynamic Control of Soft Robotic Arm, Left Ventricular Assistive Devices, Redundancy Resolution.

New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran

2017 - 2020

Research Assistant, Soft Robotics Lab

- Control of a Soft Longitudinal Actuator Using MPC-NN Approach.
- · Design and Build Longitudinal and Bending Soft Actuator Experimental Setups.
- Robust Model Reference Adaptive Control of a Soft Bending Actuator with Input Constraints.
- Adaptive Control of Soft Bending Actuator Using Modified Adaptive + RISE Control.

Amirkabir University of Technology, Tehran, Iran

2018 - 2019

Mechatronics Engineer of a research team working on MotoGP Simulator

• Control of a simulator using Arduino and AVR.

Bu Ali Sina University, Hamedan, Iran

2016

Instructor

· Introduction on SolidWorks

Professional Service

Technical Reviews:

IEEE Robotics and Automation Letters (RA-L), IEEE Access, IEEE Transaction on Haptics, IEEE Transaction on Automation Science and Engineering, Nonlinear Dynamics, Journal of Field Robotics, Scientific Reports, Multibody System Dynamics, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE International Conference on Robotics and Automation (ICRA), IEEE International Symposium on Medical Robotics (ISMR).